Лабораторный двухканальный источник питания с микропроцессорным управлением

Лабораторный двухканальный источник питания с микропроцессорным управлением.

Большинство современных лабораторных источников питания снабжены цифровыми индикаторами для контроля выходных токов и напряжений. Вместе с тем, использование для этих целей специализированных микросхем АЦП типа ICL7106 и ICL7107 наблюдается реже. Эти микросхемы громоздки и не снабжены динамическим управлением индикаторов. Производители КИП стараются реализовывать функции измерения и управления на одной микросхеме – микроконтроллере. Это упрощает и удешевляет конструкцию прибора за счёт снижения количества элементов. Возможность обновлять ПО также является немаловажным достоинством схем на микроконтроллерах.

 В предлагаемом устройстве, помимо основных функций, микроконтроллер выполняет подсчёт мощности отдаваемой в нагрузку, при необходимости включает охлаждение, а в дежурном режиме переводит устройство в режим часов с календарём.

 

Технические характеристики:

Напряжение питания: 220В 50Гц.
Постоянное выходное напряжение: 0 — 33В.
Постоянный выходной ток: 0 – 3,3А.
Максимальная мощность, отдаваемая в нагрузку: 200Вт.
Количество каналов: 2.
Амплитуда пульсаций  при максимальной нагрузке: <3мкВ.
Источник вторичного питания: импульсный.
Способ регулирования мощности: линейный.
Охлаждение нагретых зон: автоматическое.

 

Основные возможности и режимы:

1. Режим отображения времени даты с учётом високосного года.
2. Функция автоматической коррекции времени.
3. Режим снижения яркости в дежурном режиме (только для VFD версии).
4. Отображение температуры нагретой зоны.
5. Режим отображения напряжений, токов и мощностей в рабочем режиме.
6. Функция проверки исправности датчика температуры.
7. Функция автоматического включения/выключения вентилятора охлаждения.
8. Функция ручного управления подачей мощности в нагрузку.

 

Лабораторный источник питания состоит из следующих функциональных блоков:

1. Блок управления и индикации.
2. Блок измерения.
3. Источник питания для блока управления и индикации и блока измерения.
4. Силовой блок.
5. Устройство стабилизации напряжений и токов.
6. Устройство охлаждения.

 

Блок управления и индикации

Блок управления и индикации представляет собой устройство, построенное на базе микроконтроллера ATMEGA8 (схема 1.1 и 1.2).

В нём имеются четыре аналоговых входа для измерения напряжений и токов, выходы для включения реле подачи напряжения в нагрузку и включения вентилятора охлаждения, вход для подключения датчика температуры, кнопки управления и индикаторная панель.
Программа для микроконтроллера ATMEGA8 была написана для VFD — вакуумного флюоресцентного дисплея 4*20 CU20045SCPB-T23A FUTABA и стандартного 4*20 ЖКИ.

 

Питание блока – стабилизированное 5 вольт. Максимальное паспортное потребление тока VFD – 1 ампер. Это на два порядка больше чем у ЖКИ, что следует учесть при выборе источника питания для этого блока.

 

Блок измерения

Блок измерения (схема 2) представляет собой гальванически развязанную между входом и выходом систему двойного преобразования аналогового сигнала – напряжение- частота-напряжение (V — F — V).

Блок измерения является прецизионным устройством с нелинейностью не хуже 0,01%. Питание устройства со стороны измерения (левая часть согласно схеме 2) 8,5 вольт и может лежать в пределах 5…40 вольт. Следует обратить внимание, что значительное изменение питающих напряжений от указанных на схеме потребует изменение номиналов в цепях питания светодиодов оптопар. Правая часть блока измерения гальванически связана с блоком управления и индикации и имеет тоже питание 5 вольт.

На схеме блока измерения изображён только один канал, канал напряжения и тока А. Канал В идентичен каналу А.

Настройка блока сводится к установке выходного напряжения при соответствующем напряжении на входе при помощи подстроечных резисторов RS – 10k и 50k для тока и напряжения соответственно. Для простоты настройки блока измерения необходимо использовать один источник питания 5…10 вольт, включенный параллельно всем питаниям каналов и второй, в качестве источника измеряемого напряжения на входе.

Затем необходимо проверить прохождение сигнала от входа к выходу в соответствии с указанными на схеме значениями. Во избежание выхода из строя блока измерения при настройке не следует превышать максимально допустимое значение напряжения на входе микросхем LM331.

 

Источник питания для блока управления и индикации и блока измерения

Источник питания для блока управления и индикации и блока измерения является наиболее сложным устройством и требует некоторого опыта при изготовлении (схема 3). Источник питает соответствующие блоки несколькими стабилизированными напряжениями, гальванически изолированными друг от друга.

В авторском варианте использован импульсный трансформатор Т1 37P-6000 от отслужившего свой срок драйвера мотора. Это стандартный трансформатор, который использовался для питания цепей управления силовых модулей с составными транзисторами и питания процессорной части. Вполне допустимо применение любого импульсного трансформатора с 5-ти вольтовой обмоткой на 1,5 ампера и четырьмя изолированными обмотками с напряжениями 8…20 вольт 30-100 мА для блока измерения. Такие трансформаторы установлены во всех драйверах моторов серво- и переменного тока. Подойдут и импульсные трансформаторы для питания цепей управления IGBT-модулей. Иногда проще использовать готовый импульсный источник питания, доматав недостающие обмотки. При этом следует соблюдать фазировку согласно схеме 3 и не соединять корпус обмотки питания контроллера с общими шинами вторичных обмоток.

В таблице 1 указаны выходные напряжения и токи трансформатора Т1.

Таблица 1

Номер контакта трансформатора Т1

Назначение

Напряжение после выпрямителя

Минимально допустимый ток

1;2

Первичная обмотка

3;4 + 7;8

Обмотка для питания контроллера IC1

2×14В

100мА

5;6

Обмотка для питания блока управления и индикации (схема 1) и правой части блока измерения (схема 2)

1500мА

9;10

Обмотка для питания левой части блока измерения (схема 2)

8.5В

30мА

11;12

Обмотка для питания левой части блока измерения (схема 2)

8.5В

30мА

13;14

Обмотка для питания левой части блока измерения (схема 2)

8.5В

30мА

15;16

Обмотка для питания левой части блока измерения (схема 2)

8.5В

30мА

Применяя ШИМ контроллер KA1M0565R автор руководствовался простотой схемы включения и интегрированного в контроллер силового транзистора.

 

Силовой блок

Силовой блок представляет собой четыре адаптированных источника питания от ноутбука. Адаптация сводится к переключению шины заземления и экрана от минусовой шины 19 вольт и подключению их через разделительные конденсаторы 4,7нФ 1кВ к обоим полюсам выходного напряжения 19 вольт согласно схеме 4. Это сделано для того, чтобы при последовательном включении каналов не происходило короткое замыкание через шину заземления. В силовом блоке следует использовать источники питания с выходным током не менее 3,5 ампер и напряжением 17-20 вольт. Готовые блоки питания следует вставить в изогнутый стальной экран из лужёной жести, затем спаять его по шву и заземлить.

 

Устройство стабилизации напряжения и тока

Устройство стабилизации напряжения и тока представляет собой линейную схему регулирования мощности. На схеме 5 изображён один канал А. Каналы А и В идентичны. Общие шины и шины питания каналов изолированы друг от друга. Вход устройства подключен к силовому блоку, а выход к входным контактам коммутационных реле pwrout1_2 в блоке управления и индикации. Выходные контакты коммутационных реле pwrout1_2 подключены непосредственно к клемам, расположенным на передней панели устройства. К этим клемам подключены входы блока измерения напряжения. Для измерения тока соответствующие входы блока измерения подключены к токовым шунтам R16 в соответствии с указанной на схеме полярностью.

Для настройки устройства стабилизации напряжения и тока необходимо установить напряжения питания +/-17,5 вольт в контрольных точках согласно схеме с неустановленными или отключенными микросхемами операционных усилителей ОР1 и установить границу включения индикатора защиты по току limit_I.

Напряжения питания +/-17,5 вольт в контрольных точках устанавливаются потенциометрами R23 и R24 при помощи цифрового вольтметра.

Граница включения индикатора защиты по току limit_I устанавливается потенциометром R20 в положении, когда регулятор тока R11 находится на минимуме – в крайнем левом положении. Индикатор защиты должен светиться ровно и без мерцаний.

Измерительные резисторы R16, составные транзисторы VT1 от двух каналов, датчик температуры IC2 от блока управления и индикации, вентилятор охлаждения размещают на основном радиаторе (площадью 2100 см²) в задней части корпуса источника питания. Микросхемы стабилизаторов напряжения двух каналов DA3 и DA4 также необходимо устанавить на радиатор. Это может быть как основной, так и установленный в устройстве стабилизации напряжения и тока радиатор. Установленные на корпус основного радиатора элементы необходимо изолировать, а радиатор заземлить. Общий провод питания 5В также необходимо заземлить. Трансформаторы питания каналов маломощные 220В/2*22В-2,5Вт.

Для удобства на плате устройства стабилизации напряжения и тока установлена линейка параллельно включеных разъёмов для питания 220 вольт всех блоков источника (схема 6).

При использовании указанных на схеме элементов и соблюдении номиналов подстроечных элементов дополнительной настройки устройства стабилизации напряжения и тока не требуется.

В случае наблюдения осциллографом возбуждений на выходе элемента ОР1.2 операционного усилителя, необходимо увеличить ёмкость конденсатора С6.

 

Устройство охлаждения

 

 

 

Устройство охлаждения состоит из радиатора и вентилятора охлаждения, установленного на основной радиатор. Для питания вентилятора охлаждения и подсветки светодиодов ЖКИ (если индикатор с подсветкой) используется готовый миниатюрный источник питания для зарядки мобильного телефона, расчитанный на ток 500 мА и напряжение 12 вольт. Его выходное напряжение поступает на вход контактной группы реле COLLER в блоке управления и индикации и ко входу подсветки ЖКИ вышеописанным способом. Выход контактной группы реле COLLER подключается непосредственно к вентилятору охлаждения.

На передней панели располагают кнопки управления, индикаторы включения защиты по току, клеммы и регуляторы. Регуляторы напряжения – многооборотные. При необходимости на боковой стороне размещают сетевой выключатель.

 

О деталях

Резисторы в измерительных цепях в блоке измерения и устройстве стабилизации напряжения и тока должны быть с точностью не хуже 1%, оптопары IC2, IC5 — 4N35, CNY17 или аналогичные. Транзистор VT1 в устройстве стабилизации напряжения и тока – любой N-P-N дарлингтон транзистор 60 – 250 вольт, мощностью не менее 150 ватт и током коллектора не менее 10 ампер. Измерительный шунт – резистор R16 – мощностью не менее 5 ватт. Без изменений схемы микросхема KA1M0565R может быть заменена на KA1H0565R. С определёнными доработками допустимо использование контроллеров серий TOP или VIPER. Контактные группы комутационных реле должны быть расчитаны на токи, указанные на схеме.

Для снижения общих габаритов устройства целесообразно использовать поверхностные SMD-компоненты, а нужные значения сопротивлений для измерительных цепей можно получить, используя программу Parcalc (http://pgurovich.ru/parcalc/).

 

Работа с устройством

Устройство предназначено для отображения на индикаторе информации в 2-х режимах:
режим 0 – отображается время, календарь и температура на пониженной яркости;
режим 1 – отображаются напряжения, токи и мощности 2-х каналов на полной яркости.

 

Выбор режима производится соответствующим логическим уровнем напряжения на входе MODE ( вывод 19 ATmega ) .

При переходе из режима 0 в режим 1, удерживая кнопку MODE, напряжение с ЛИП не поступит в нагрузку до отпускания этой кнопки. Это сделано для контролирования момента подачи напряжения.

При превышении температуры датчика значения +45,0°С, независимо от режима индикации, включится вентилятор, а при снижении её до +35,5°С, вентилятор выключится.

При превышении температуры датчика значения +85,0°С в режиме 1 на индикаторе вместо значений мощностей отобразится надпись “ ALARM !” .

При нарушении нормальной работы термодатчика, независимо от режима индикации, в нижней строке индикатора отобразится надпись “ TempERR”.

Редактирование времени и календаря

Установка новых значений времени и календаря возможна только в режиме 0. Кнопкой Sel ( вывод 17 ATmega ) производится выбор параметра для его изменения в следующем порядке : часы, минуты, день, месяц, день недели, год, секунды. Выбранный параметр мигает на индикаторе. Он устанавливается в нужное значение кнопками “+” и “-“ ( выводы 18 и 19 ATmega ) кроме секунд, кнопкой Sel секунды  обнуляются, т.е. текущая минута начинается сначала.

Устройство выходит из режима редактирования :
— через 3 секунды после последнего нажатия на любую кнопку;
— после редактирования секунд;
— после редактирования точности хода часов .

После удержания кнопки “+” или “-“ нажатой более 3-х секунд увеличится скорость изменения значения выбранного параметра.

Редактирование точности хода часов

При необходимости подстроить точность хода часов нужно в режиме 0 подержать кнопку Sel нажатой не менее 3-х секунд. На индикаторе появится параметр, управляющий точностью. При изменении этого числа на единицу кнопками “+” и “-“ точность хода изменится в ту же сторону примерно на 1 секунду за 3 месяца. После установки нового значения параметра для его записи в EEPROM и выхода из редактирования нужно нажать кнопку Sel. Параметр точности может быть в пределах от 0 до 2000000.

 

 

Устройство источника питания не является критичным в плане ЭМС, не требует дополнительных мер и может быть собрано на тестовых платах с использованием SMD -компонентов. Важно, чтобы все экраны импульсных источников питания были соединены с заземлением, а высоковольтные первичные цепи были надёжно изолированы и закрыты.

 

По этой ссылке можно скачать архив в котором представлены схемы в формате spl7, прошивки hex-файлов для VFD для LCD и дополнительная документация.

 

Гурович Павел, Беэр-Шева, Израиль, 2011

Статья была опубликована в журнале «Электрик» март/2012.

Все права защищены. Перепечатка, публикование данной статьи в любых других источниках без согласия автора запрещена.

04.10.2011 PGurov

 Метки: ,

Comments are closed.